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1. Introduction
Structural reliability assessment has been widely recognized as vi-

tal in engineering product design and development [7]. In the context 
of structural reliability assessment, uncertainty propagation plays a 
significant role, which aims to quantify the uncertainties of input fac-
tors and calculate the overall uncertainty within the model response in 
reliability estimation [36].

Before propagating the structure’s uncertainty, a primary issue is 
to choose a reasonable mathematical theory related to the types of 
uncertainty, to quantify the uncertainty [12,38]. In practical structural 
engineering problems, uncertainty can be divided into two catego-
ries: aleatory uncertainty derived from inherent randomness of physi-
cal behavior, while the epistemic uncertainty arising out of lack of 
knowledge [10].

Probability theory is regarded as the most effective tools to de-
scribe aleatory uncertainty in structural reliability assessment. Over 
the last decades, numerous reliability assessment methods based on 
probability theory have been developed, including first-order reliabil-
ity method (FORM) [23], second-order fourth moment [29] Monte 
Carlo simulation (MCS) [24], FORM-sampling simulation method 

[22], envelope function method [28], response surface method (RSM) 
[6], and Bayesian networks method [26]. Although these probabilistic 
methods typically make sense in uncertainty quantification and propa-
gation when the structure is mainly affected by aleatory uncertainty, 
they do not work well in the scenarios involving great epistemic un-
certainty [37]. For example, the distribution of input factors may not 
be precisely obtained due to insufficient sample data. Consequently, 
several alternative non-probabilistic theories have been developed to 
describe the epistemic uncertainty in reliability assessment.

The general non-probabilistic structural reliability assessment the-
ories consist of fuzzy set theory [9], fuzzy random theory [13], pos-
sibility theory [1], interval theory [5, 27], and evidence theory [39]. 
The fuzzy and possibility measures fail to satisfy the duality prop-
erty, which will make it difficult for decision-makers to understand 
the results [33]. Moreover, interval and evidence theories will lead 
to an over-conservative result due to the interval extension problems 
[38]. To overcome the shortcomings of the above-mentioned theories, 
a new mathematical framework called uncertainty theory was intro-
duced to deal with epistemic uncertainty.

Uncertainty propagation plays a pivotal role in structural reliability assessment. This paper 
introduces a novel uncertainty propagation method for structural reliability under different 
knowledge stages based on probability theory, uncertainty theory and chance theory. Firstly, 
a surrogate model combining the uniform design and least-squares method is presented to 
simulate the implicit limit state function with random and uncertain variables. Then, a novel 
quantification method based on chance theory is derived herein, to calculate the structural 
reliability under mixed aleatory and epistemic uncertainties. The concepts of chance relia-
bility and chance reliability index (CRI) are defined to show the reliable degree of structure. 
Besides, the selection principles of uncertainty propagation types and the corresponding 
reliability estimation methods are given according to the different knowledge stages. The 
proposed methods are finally applied in a practical structural reliability problem, which il-
lustrates the effectiveness and advantages of the techniques presented in this work.
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Uncertainty theory proposed by Liu [18] in 2007 to describe the 
belief degree of human, has been successfully applied in various areas 
such as decision making [30], uncertain insurance [19, 32], uncertain 
risk and reliability analysis [34, 35]. Uncertainty theory is considered a 
reasonable and useful tool to express epistemic uncertainty, compared 
with the theories mentioned above [12]. Since the uncertain meas-
ure satisfies the axiom of duality, normality, and subadditivity, the 
results produced by the uncertainty theory are more in line with real 
engineering conditions [8]. Hence, in this work, uncertainty theory is 
chosen to express epistemic uncertainty and describe human thinking 
processes. In practical structural problems, there are usually two types 
of input factors that embody different types of uncertainties at the 
same time. Some input factors may suffer great epistemic uncertainty 
and are described by uncertainty theory, while some others may be 
primarily determined by aleatory uncertainty and are modeled based 
on probability theory. These structures comprising both aleatory and 
epistemic uncertainties are called uncertain random structures in this 
paper. It is impossible to analyze the reliability of uncertain random 
structures only by probability theory or uncertainty theory [38].

To solve this problem, chance theory was established by Liu [20] 
in 2013 to propagate aleatory and epistemic uncertainties together. 
Chance theory can be understood as a combination of probability 
theory and uncertainty theory, which also satisfies normality, duality, 
and subadditivity theorems. In recent years, chance theory has been 
successfully used in various fields such as project scheduling [11], un-
certain random risk analysis [8], uncertain random programming [25], 
and systems reliability analysis [31, 38]. Especially, a hybrid model of 
structural reliability analysis based on chance theory was proposed by 
Zhang [37] in 2019, and a new reliability index was proposed. How-
ever, this method has the following disadvantages. Firstly, there is no 
corresponding reliability analysis method when the implicit limit state 
function (LSF) contains both random and uncertain variables. Sec-
ondly, the defined reliability and reliability index do not involve time 
dynamic parameters. Thirdly, this reliability analysis method does not 
consider the problem of uncertainty propagation.

For completeness, this paper uses a uniform design (UD) combined 
with the least-squares (LS) method to simulate LSF, which adapts to 
both random and uncertain variables. The UD is a novel kind of ex-
perimental design method founded by Fang and Wang [3], defined 
according to the uniform distribution in number theory [40]. Com-
pared to the orthogonal design (OD), factorial design (FD), and Latin 
hypercube sampling (LHS) methods, the UD method appears to be 
more advanced if the number of experimental factors is large and the 
number of experiments is limited [4].

Besides the above research, this paper’s main contribution is to pro-
vide a new uncertainty propagation method for structural reliability 
assessment. Uncertainty propagation aims to estimate structural out-
put responses by propagating the input factors essential for structural 
reliability assessment and safety design [36]. Normally, uncertainty 
propagation can be classified into the form of level-1 and level-2 [14]. 
For level-1 propagation, the values of input factors can be charac-
terized by epistemic or aleatory uncertainties at the same level [2]. 
For level-2 propagation, the values of input factors are represented by 
aleatory uncertainties on the first level. Epistemic uncertainties de-
scribe the parameters of probability distributions in the second level 
[34]. These two types of uncertainty propagation methods are com-
monly used in risk assessment. Comprehensive research about this 
was reported by Hu et al. [8], who presented a framework for propa-
gation methods corresponding to different knowledge stages in fault 
tree analysis. However, there are no literature about the level-2 uncer-
tainty propagation modeling and propagation type selection methods 
for structural reliability assessment. Hence, this paper aims to develop 
some propagation analysis methods and the principles for the selec-
tion of propagation type in structural reliability assessment.

The remainder of this work is organized as follows: Section 2 brief-
ly discusses some important mathematical concepts of uncertainty 
and chance theory. A new surrogate model combining UD and LS 

method is proposed for implicit LSF in Section 3. Section 4 provides a 
novel structural reliability quantification model based on chance theo-
ry. Some principles for choosing appropriate uncertainty propagation 
types are discussed, and corresponding reliability calculation methods 
are provided in Section 5. In Section 6, a practical engineering case 
study is carried out to show the proposed method’s rationality. Finally, 
some conclusions are presented in Section 7.

2. Preliminaries
In this section, some fundamental knowledge and results regarding 

the uncertainty theory and chance theory are introduced.

2.1. Uncertainty theory
Uncertainty theory is a fairly new branch of axiomatic mathemat-

ics, and has been widely applied in various areas. In the uncertainty 
theory, the human belief degree of events are quantified by defining 
uncertain measures.

Definition 2.1 (Uncertain measure [15]) Let Γ be a nonempty set, 
and  be a σ- algebra over Γ. Each element Λ in  is called an event. 
Then, a set function M is defined as an uncertain measure if it satisfies 
normality, duality, and subadditivity axioms.

Definition 2.2 (Uncertain variable [18]) An uncertain variable is 
a measurable function τ from an uncertainty space (Γ, , M ) to the 
set of real numbers, i.e., {τ ∊B} is an event for any Borel set B of real 
numbers.

Definition 2.3 (Uncertainty distribution [15]) The uncertain-
ty distribution Φ(x) of an uncertain variable τ can be defined by  
Φ(x) =M{τ≤x} for any real number x.

A regular uncertainty distribution Φ(x) is defined as an uncertainty 
function that is continuous and strictly increasing with respect to x. 

Example 2.1 An uncertain variable τ is defined as a normal uncer-
tain variable if it has a normal uncertainty distribution:

 Φ( )  (1 + exp( ( )
3

)) 1x m x
=

− −π
σ

  x ∊R (1)

It is denoted by τ τ (m, σ), where m  is the expected value and σ 
is the standard deviation.

Example 2.2 An uncertain variable τ is defined as linear variable if 
it has a linear uncertainty distribution:

 Φ( ) 

0,          if  

,   if  

1,           i

x

x a
x a
b a

a x b=

≤
−
−

< ≤

ff  b x<










 (2)

It is denoted by τ τ  ( , )a b , where a and b are real numbers with 
a b< .

Since the uncertainty theory can describe the incomplete informa-
tion contained in design variables, the epistemic uncertainty (espe-
cially human) can be characterized by uncertain variables and uncer-
tainty distribution in the uncertainty space [16, 17].

Definition 2.4 (Inverse uncertainty distribution [15]) Let τ be an 
uncertain variable with regular uncertain distribution Φ(x). The in-
verse function Φ-1( )u  is known as the inverse uncertainty distribu-
tion of τ.

Theorem 2.1 (Operational law [18]) Let τ τ τ1 2, , ,  n  be inde-
pendent uncertain variables with regular uncertainty distributions 
Φ Φ Φ1 2, , ,  n , respectively. If f n( , , , )1 2τ τ τ  is continuous, 
strictly increasing with respect to τ τ τ1 2, , ,  m  and strictly decreas-
ing with respect to τ τ τm m n+ +1 2, , ,  , then τ τ τ τ= f n( , , , )1 2   is 
an uncertain variable with inverse uncertainty distribution:
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2.2. Chance theory
As a combination of uncertainty and probability theory, the chance 

theory is applied as a new tool to deal with problems affected by both 
uncertainty and randomness. The basic concept involves the chance 
measure of an uncertain random event in a chance space.

Definition 2.5 (Chance measure [20]) Let (Γ, , M ) ×  (Ω, , Pr) 
be a chance space, and let Θ È ∈   ×   be an event. Then the chance 
measure of  Θ can be defined as:

 Ch{ } Pr{ M{ ( , ) } }d0
1

Θ Ω Γ Θ= ∈ ∈ ∈ ≥∫ ω γ γ ω| | r r  (4)

Theorem 2.2 Let (Γ, , M ) ×  (Ω, , Pr ) be a chance space, then 
the chance measure Ch{ A}=M{ } Pr{A}Λ Λ× ×  for any ΛË ∈ and 
any A∈. Especially, we have Ch{ } 0, Ch{ } 1∅ = × =Γ Ω  [15].

Definition 2.6 (Uncertain random variable [20]) An uncertain ran-
dom variable is a measurable function ξ  from a chance space (Γ, , 
M ) ×  (Ω, , Pr ) to the set of real numbers such that { }ξ ∈B  is an 
event in  ×   for any Borel set B of real numbers.

Definition 2.7 (Chance distribution [15]) Let ξ  be an uncertain 
random variable. Then its chance distribution is defined as 
Φ( ) Ch{ }x x= ≤ξ  for any real number x.

Theorem 2.3 Let η η η1 2, , , m  be independent random variables 
with probability distributions Ψ Ψ Ψ1 2, , , m , and let τ τ τ1 2, , ,  n  
be independent uncertain variables with uncertainty distributions 
ϒ ϒ ϒ1 2, , ,  n , respectively. If f  is a measurable function, then the 

uncertain random variable ξ η η η τ τ τ= f m n( , , , , )1 2  1 2, , ,  has a 
chance distribution [20]:

 Φ Ψ Ψ Ψ( ) ( ; , , , )d ( )d d( ) ( )1 2 1 1 2 2x F x y y y y y ym m m m=
ℜ∫       (5)

where 1 2( ; , , , )mF x y y y  is the uncertainty distribution of the uncer-
tain variable f y y ym n( , , , , )1 2  τ τ τ1 2, , ,  for the any real numbers 

1 2, , , my y y .
Besides, assume f  is continuous, strictly increasing with respect to 

τ τ τ1 2, , ,  k  and strictly decreasing with respect to  τ τ τk k n+1 +2, , ,  .  
Then 1 2( ; , , , )mF x y y y  is the root u  of the following equation:

f y y y u u u um k k n( , , , ), ( ), , ( ), (1 ), , (1 )1 2 1
1 1

+1
1 1

  ϒ ϒ ϒ ϒ− − − −− − = xx  (6)

Theorem 2.4 (Expected value [21]) Let η η η1 2, , , m  be indepen-
dent random variables with probability distributions Ψ Ψ Ψ1 2, , , m , 
and let τ τ τ1 2, , ,  n  be independent uncertain variables with regular 
uncertainty distributions ϒ ϒ ϒ1 2, , ,  n , respectively. If f  is contin-
uous and strictly increasing with respect to τ τ τ1 2, , ,  k  and strictly 
decreasing with respect to τ τ τk k n+1 +2, , ,  . Then the uncertain 
random variable ξ η η η τ τ τ= f m n( , , , , )1 2  1 2, , ,  has an expected 
value:

E f y y y u u

u

m k

k
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      (7)

Theorem 2.5 (Variance [15]) Let η η η1 2, , , m  be independent 
random variables with probability distributions Ψ Ψ Ψ1 2, , , m , 
and let τ τ τ1 2, , ,  n  be independent uncertain variables with regular 
uncertainty distributions ϒ ϒ ϒ1 2, , ,  n , respectively. Assuming f  is 

continuous, strictly increasing with respect to τ τ τ1 2, , ,  k  and 
strictly decreasing with respect to τ τk n+1, ,  , then 
ξ η η η τ τ τ= f m n( , , , , )1 2  1 2, , ,  has a variance:

V x F e x y y F e x y ym mm[ ] 2 (1 ( ; , , ( ; , , )

       

) )1 10ξ = − + −+
+∞

ℜ ∫∫  

      d d ( ) d ( )1 1x y ym mΨ Ψ

   (8)

where e is the expected value E[ ]ξ  of ξ , and 1 )( ; , , mF x y y  
is the uncertainty distribution of uncertain variable 
f y y ym n( , , , , )1 2  τ τ τ1 2, , ,  for any real numbers 1 2, , , my y y , 

which is also the root of Equation (6).

3. Advanced UD-LS surrogate model for implicit limit 
state functions

In the practical structural reliability problems, the analytical ex-
pression of LSF is generally unknown. The traditional RSM of struc-
tural reliability analysis is iteratively obtained based on the proba-
bilistic reliability index (PRI). Furthermore, the traditional RSM is 
only suitable for random variables and requires a large number of test 
sample data. Thus, a new surrogate model is established by combining 
UD with the LS method considering both of aleatory and epistemic 
information.

The structure’s response is obtained by experiment or finite ele-
ment analysis, and the sample points used to fit the surrogate model 
are determined by the design of experiments (DOE) methods. Com-
pared with traditional DOE methods, the UD method is more stable 
and efficient [4]. UD can maintain the results with high stability and 
accuracy even with a small sample data. Similar to the OD approach, 
the UD method can be used to generate experiment points by a series 
of designed UD tables. The representation of a specific UD table is 

( ) or  ( )n n
n nU m U m∗ , where U denotes the UD table, m represents 

the number of levels and the number of experiments required, n is 
the number of input factors, and ∗  represents the UD table with a 
smaller deviation and better uniformity. This work presents only a 
brief introduction of the UD method, and interested readers can refer 
to relevant research literature [3, 4, 40]. The quadratic polynomial 
surrogate model without the cross-terms is chosen as the response sur-
face function of the structure.

 

2
2

0
1 1

( )
n n

i i j j
i j n

f b b x b x
= = +

= + +∑ ∑x  (9)

where x = ( , , , )x x xn1 2   is the vector of input factors, ix  is a ran-
dom variable or an uncertain variable. b = ( , , , )b b b n0 1 2

T  is 2n+1 
undetermined coefficients vector in the surrogate model [4]. Accord-
ing to the LS approach, b can be estimated based on b a a a y= −( )T T1 , 
where a is the regression coefficients vector with (2 1)m n× +  orders, 
y = ( ( ), ( ), , ( ))f x f x f xm1 2 

T  is the real responses vector of the 
structure.

Some indexes are used for validation to verify the surrogate mod-
el’s fitting performance and check the accuracy. Among them, the co-
efficient of determination R2 is the most crucial measurement index:

 R
f f

f f
R

i i
i

m

i
i

m
2

2

1
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1

21 0 1= −
−

−
≤ ≤=

=
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 x x
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 (10)

where f ( )x  is the expected value of all the real responses fi ( )x ,  
and f i

 ( )x  are the simulation values of the responses. The closer the 
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value of R2 to 1, the higher is the accuracy of UD-LS surrogate model 
fitting.

According to the stress-strength interference model and the UD-LS 
surrogate model, the LSF G( )x,α  of a structural system under mixed 
aleatory and epistemic uncertainties can be expressed as:

 G S f( ) ( )x x, ,thresholdα α= −   (11)

where x = ( , , , )x x xn1 2   is the input factor that affects the structural 
functioning, thresholdS  is the allowable threshold of structural re-
sponse, and α  is a dynamic input parameter associated with time.

4. Structural reliability assessment method under mixed 
aleatory and epistemic uncertainties

In a complex structural system, some design variables may have 
enough samples for estimating their probability distribution, which 
can be described by random variables. Nonetheless, some other de-
sign variables may lack sufficient data, which can be estimated by do-
main experts and regarded as uncertain variables. The structure can-
not be simply considered to be a random or uncertain structure model 
under mixed aleatory and epistemic uncertainties [37]. This section 
put forward an advanced structural reliability assessment method for 
this issue depending on chance measure and belief reliability theory.

4.1.	 Uncertainty	quantification	for	structural	reliability	based	
on chance measure

Let (Γ, , M ) ×  (Ω, , Pr ) be a chance space, and the LSF of 
structure contains uncertain random input factors 1 2, , , nx x x . In the 
present work, the input factors are uniformly described by uncertain 
random variables ξξ = ( , , , )ξ ξ ξ1 2  n , then the chance reliability of 
structure based on the chance measure can be defined as follows.

Definition 4.1 Assuming that G( )ξξ ,α  is the LSF of a structure, in 
which ξξ  is the vector of uncertain random variables, the chance reli-
ability is defined as the chance measure of the reliability event 
{ ( ) }G ξξ ,α > 0  at α:

 Ch Ch{ , }reliability ( ) ( )α α= >G ξξ 0  (12)

Because of the duality of chance measure, the chance measure of a 
failure event { ( ) }G ξξ ,α ≤ 0  at α can be derived as:

 
Ch Ch{ , }

1 Ch{ , }
1 Ch

failure

reliability

( ) ( )
( )

(

α α
α
α

= ≤

= − >
= −

G
G
ξξ

ξξ
0

0
))

 (13)

Consequently, the uncertainty of a safety event at α in structure 
can be quantified by Chreliability ( )α  with a numerical value of [0,  1] . 
Chfailure ( )α  describes the confidence how a failure even will be hap-
pened at α. Obviously, the higher the Chfailure ( )α , more is the pos-
sibility that the failure event will occur at α. The theorem to be defined 
below provides computational methods for practical engineering ap-
plications.

Theorem 4.1 Let the LSF of a structure contain independent 
random variables η η η1 2, , , p  with probability distributions 

1 2, , , pΨ Ψ Ψ , and independent uncertain variables τ τ τ1 2, , ,  q  
with regular uncertainty distributions ϒ ϒ ϒ1 2, , ,  q , respectively. 
If the LSF G p q( , , ; )η η τ τ α1   , , ; 1  is continuous and strictly in-
creasing with respect to τ τ τ1 2, , ,  k , and strictly decreasing with re-
spect to τ τ τk k q+1 +2, , ,  , then the chance reliability of the structural 
system at α can be rewritten as:

Ch ; ( )( ; , , , )d ( )d dreliability 1 2 1 1 2 2( )α α=
ℜ∫ F y y y y yp p p0  Ψ Ψ Ψ (( )yp   (14)

where F y y yp( ; , , , );1 20  α  is the root u of the following equation 
for any real numbers 1 2, , , py y y :

G y y y u u u up k k q( , , , ; (1 ), , (1 ) ( ), , ( );1 2   ϒ ϒ ϒ ϒ1
1 1

1
1 1− −
+
− −− − ,   )α = 0

(15)

Proof. According to the Theorem 2.3 and Definition 4.1, the chance 
reliability can be computed as follows:

Ch Ch  , , ; 

M ,
reliability 1

1

( ) { ( , , ; ) }

({

α η η τ τ α= >

=
ℜ∫

G

G y
p q

p

1 0 

,, d ( ) d , , ; ( )1 1 1y y yp q p p; ) }τ τ α > 0 Ψ Ψ

(16)

where M , , , ( ; , , , ) , , ; ;1 2 1 21{ }( ; )G y y y F y y yp q p τ τ α α> =0 0  
is the root u of Equation (15).

The proof is completed.

4.2. The new chance reliability index based on uncertain 
random variables

PRI in probability space is a vital indicator for quality of structure, 
and it can be used to describe the structural reliability under aleatory 
uncertainty. However, the PRI cannot accurately measure the reliabil-
ity under mixed aleatory and epistemic uncertainties. For complete-
ness, a novel chance reliability index (CRI) is defined using the ex-
pected value and variance of the uncertain random variable, showing 
the reliable degree of a structure in chance space.

Definition 4.2 Let (Γ, , M ) ×  (Ω, , Pr ) be an chance space, the 
LSF G G p q( , ) ( , , ; )ξξ α η η τ τ α= 1  1, , ;  of a structure contains inde-
pendent random variables η η η1 2, , , p  with probability distributions 

1 2, , , pΨ Ψ Ψ , and independent uncertain variables τ τ τ1 2, , ,  q  
with regular uncertainty distributions ϒ ϒ ϒ1 2, , ,  q , respectively. 
Then the CRI of the structural system at α can be given as follows:

 β α
α
αchance ( ) [ ( , )]

[ ( , )]
=

E G
V G

ξξ
ξξ

 (17)

where E G[ ( , )]ξξ α  is the expected value, V G[ ( , )]ξξ α  is the variance 
of LSF, and ξξ = ξ ξ ξ1 2,  p q+  is an uncertain random vector.

If the LSF is continuous and strictly increasing with respect to 
τ τ τ1 2, , ,  k , and strictly decreasing with respect to τ τ τk k q+1 +2, , ,  , 
then according to the theorems 2.4 and 2.5, the expected value and 
variance of LSF at α can be calculated as:

 
E G u u

u

G y yp k

k

p[ ( , )] ;ξξ α =

−

− −

−
ℜ ∫∫ ( , , ( ), , ( ),

(1 ),

10
1

1
1 1

+1
1

 ϒ ϒ

ϒ  , (1 ); ( ))d d ( ) d1
1 1ϒ q p pu u y y− − α Ψ Ψ

    (18)

V G x F e x y y F e x yG p G[ ( , )] ( , ) ( , )ξξ ξξ ξξα αα α= +− + −2 (1 ( ; , , ( ; , ,; )1 1    )

                     d d ( ) d

; )

( )
0

1 1

y

x y y
p

p p

p α+∞
ℜ ∫∫
Ψ Ψ (19)

where e E GG( , ) [ ( , )]ξξ ξξα α= , and F x y yp( ; , , ; )1  α  is the root u  of 
the following equation for any real numbers 1 2, , , py y y :

G y y y u u u up k k q( , , , ; ( ), , ( ), (1 ), , (1 );1 2 1
1 1

+1
1 1

  ϒ ϒ ϒ ϒ− − − −− − α )) = x  (20)

The chance-measure-based CRI is offered as a tool to measure 
the confidence that a reliability event will occur in the structural sys-
tem affected by both aleatory and epistemic uncertainties. A larger 
β αchance ( )  indicates a better possibility that the reliability event will 
occur.
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5 Joint uncertainty propagation method for structural 
reliability assessment

Uncertainty propagation plays a significant role in reliability prob-
lem, which aims to estimate structural output responses by propagat-
ing the input factors essential for reliability assessment and safety 
design. To make it possible for decision-makers to find an appropri-
ate uncertainty propagation types under different knowledge stages, a 
new joint uncertainty propagation technique is presented in this sec-
tion. Therefore, the selection principles of uncertainty propagation 
types are developed in section 5.1. Section 5.2 briefly introduces the 
level-1 uncertainty propagation method, especially the propagation 
of uncertain random structure. The novel level-2 joint uncertainty 
propagation method for structural reliability assessment is proposed 
in Section 5.3.

5.1. The principles of uncertainty propagation types selec-
tion

In general, uncertainty propagation can be classified into the form 
of level-1 and level-2. The quantification and propagation of uncer-
tainty runs through the whole analysis process. To explain the uncer-
tainty propagation of level-1 and level-2 types, the probability theory 
is utilized to express aleatory uncertainties, while the uncertainty the-
ory is used to describe the epistemic uncertainties. G( )x  is assumed 
to be the LSF established in Section 3, where x = ( , , , )x x xn1 2   is the 
input factors vector, and G is the output. To analyze the uncertainty of 
output G, the uncertainty expressions of the input factors needs to be 
studied, in addition to their propagations through LSF.

According to the knowledge stage of reliability analyst, the reli-
ability evaluation types can divided into different stages. For exam-
ple, uncertainty propagation types can be divided into five different 
stages, shown in Fig.1. At stage 1, the reliability analyst has no sample 
data on 1 2, , , nx x x . So uncertain variables are used to describe all 
the input factors. In this situation, the uncertainty propagations are in 
level-1 type. At stage 2, the reliability analyst collects more sample 
data and improves his knowledge. The distribution function type of 

1x  is known, which is the probability distribution type. Nonetheless, 
the shaping parameters of this probability distribution are still lack-

ing and can be described by uncertain variables. 2 3, , nx x x  are still 
described by uncertain variables. In this case, the uncertainty propa-
gations will be in level-2 type. At stage 3, the knowledge of reliability 
analyst improves further. The probability distribution of 1x  is deter-
mined completely, while 2 3, , nx x x  are still described by uncertain 
variables, and the uncertainty propagations turns into level-1 type. At 
stage 4, the knowledge of reliability analyst improves by obtaining 
the probability distributions type of 2x  and 3x , but their shaping pa-
rameters are still lacking and can be described by uncertain variables. 

1x  and 4 , nx x  are perfectly described by probability distributions. 
In this situation, the uncertainty propagations turn into level-2 type. 
At stage 5, the probability distributions of all input factors are deter-
mined completely due to elimination of epistemic uncertainties, and 
random variables are used to describe all input factors. Meanwhile, 
the uncertainty propagations turn into level-1 type.

In summary, the selection of uncertainty propagation types depends 
on the knowledge stage and sample data owned by the reliability ana-
lyst. For more general situations, the decision-makers can match any 
circumstances in practical engineering by increasing the number of 
stages.

5.2. Level-1 uncertainty propagation in structural reliability 
assessment

As the example mentioned in Section 5.1, there are three differ-
ent knowledge stages in level-1 uncertainty propagation type, name-
ly, stage 1, stage 3 and stage 5. For stage 1, the uncertain variables 
describe all the input factors of LSF, and uncertainty propagations 
analysis is handled through a pure uncertainty model. The uncertain 
reliability and index can be obtained based on the uncertainty theory 
and the operational laws, and the specific calculation methods of un-
certain structure can be referred to the literature [35]. In stage 3, some 
input factors have sufficient data, so their probability distributions can 
be obtained, while some input factors lack data and can only be de-
scribed by uncertain variables. By analyzing the joint propagation of 
uncertainty and probability, the methods proposed in the Sections 4.1 
and 4.2 are used to estimate the reliability and index of uncertain ran-
dom structure. The structure that corresponds to stage 5 is called ran-
dom structure, and the uncertainty propagations analysis for random 

Fig. 1. Uncertainty propagation types of structure corresponding to different stages
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structure can be implemented by traditional pure probability model. 
The probabilistic reliability and index of random structure can be esti-
mated by the classical methods such as FORM and MCS.

5.3. Level-2 joint uncertainty propagation in uncertain ran-
dom structure reliability assessment

As the example mentioned in Section 5.1, there are two different 
knowledge stages in the level-2 uncertainty propagation type, namely, 
stage 2 and stage 4. For stage 2, some input factors in the LSF are 
expressed by probability distributions, of which the shaping param-
eters are described by uncertainty distributions, while other input 
factors can be expressed by uncertainty distributions. The next two 
subsections will introduce the detailed calculation methods in these 
two stages.

Let a LSF of structural system contain p q+  input factors, of 
which p input factors are expressed by random variables, and the 
shaping parameters of the probability distributions are described by 
uncertain variables, while q input factors are expressed by uncertain 
variables. The level-2 joint propagation in stage 2 can be considered 
as a more general situation of propagations in stage 3. Consequently, 
a new level-2 uncertainty analysis method and the corresponding reli-
ability calculation model are provided for stage 2 in this work.

Assuming that p input variables are represented as η η η1 2, , , p , 
and each probability distribution of ηi  is represented as Ψi i i( )η θ , in 
which θi  represents the shaping parameters of probability distribu-
tion. The shaping parameters are described by uncertainty distribu-
tions Φi i( )θ . Let τ τ τ1 2, , ,  q  represent the q input variables, and 
ϒ j j( )τ  represent each uncertainty distribution of τ j . According to 
the method presented in Section 4, if the LSF G p q( , , ; )η η τ τ α1   , , ; 1  
is continuous and strictly increasing with respect to τ τ τ1 2, , ,  k , and 
strictly decreasing with respect to τ τ τk k q+1 +2, , ,  . Therefore, the 

chance reliability of the structural system at α can be calculated as:

Ch ; ( )( ; , , , )d ( )dreliability 1 2 1 2( )α α θ θ=
ℜ∫ F y y y y yp p0 1 1 2 2 Ψ Ψ d ( )Ψ p p py θ

(21)

where F y y yp( ; , , , );1 20  α  is the root u of the Equation (15) for any 
real numbers 1 2, , , py y y .

Moreover, the CRI of the structural system at α can be computed 
from Equation (17), where the expected value and variance of LSF 
G( , )ξξ α  at α can be computed as follows:

E G u u
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where e E GG( , ) [ ( , )]ξξ ξξα α= , and F x y yp( ; , , ; )1  α  is the root u  of 
the Equation (20) for any real numbers 1 2, , , py y y .

Therefore, the chance reliability and CRI of the structural system is 
no longer a point value, but varies between the lower and upper bounds 
of shaping parameters with the uncertainty distribution Φi i( )θ  .

The level-2 joint propagation in stage 4 represents more general 
circumstances of random structure in stage 5. Thus, the reliability and 
index of random structure can also calculated by the traditional pure 
probability methods such as FORM and MCS. Consider a LSF 

G n( , , )η η α1  ;  of structure contains n input factors, m input factors 

are expressed by the probability distributions Ψi i i( )η θ , and the 
shaping parameters θi of Ψi i i( )η θ  are described by the uncertainty 
distributions Φi i( )θ , while n m−  input factors are expressed by ran-
dom variables with no epistemic uncertainties. The variation range of 
reliability and index can be calculated by replacing the original prob-
ability distributions with Ψi i i( )η θ  in classical FORM. Thus, the 
probabilistic reliability and index of the structure are also no longer a 
point value, and the variation range can be obtained based on the un-
certainty distribution of the shaping parameters.

6. An illustrated example
In this section, the propagation analysis methods developed herein, 

are applied to a practical engineering application of turbine disk reli-
ability assessment. The description of turbine disk and the implemen-
tation of UD-LS surrogate model are introduced in Section 6.1. Section 
6.2 shows the specific application process of the uncertainty propaga-

tion method proposed in this work. Some results and discussions on 
the advantages of the proposed method are given in Section 6.3.

6.1. Structure description and LSF simulation
Turbine disk is the key rotating component of modern aircraft en-

gines, driven based on high-temperature gas in the engine combustion 
chamber. Because the turbine disk converts the thermal energy in the 
gas into mechanical energy to drive the engine, its reliability level will 
directly affect the performance of the entire engine.

 As shown in Fig. 2(a), the three-stage turbine disk of a low-pressure 
compressor in a turbofan engine was selected as the research object. 
The pins on the roulette wheel are evenly and symmetrically distrib-
uted along the circumference. According to engineering analysis, the 
chief input factors affecting the reliability of roulette wheel include 
material characteristics, load and speed. In this work, the material of 
hollow pin was 3Cr13, while the material of roulette wheel was TC11. 
The blade load was applied perpendicularly to the hollow pin, and the 
average value of the load on each hollow pin was 24925N. The rel-
evant parameters of input factors are shown in Table 1. Since the main 
failure mode of the turbine disk requires that the maximum stress 
value is greater than the allowable strength thresholdS , the maximum 
stress value can be obtained by finite element analysis.

Because the shape and load of the turbine disk are completely sym-
metrical, 1/37 part of the turbine disk is considered to describe the 
entire structure. The average value of each input factor was chosen 
as the variable value, and the turbine disk was simulated using AN-
SYS 18.2 at a speed of 1000 rad/s. According to the simulation results 

Table 1. Input factors of three-stage turbine disk

Input factors Physical meaning Mean
value

Standard
deviation

1(GPa)E Elastic modulus of roulette wheel 123 5

1v Poisson’s ratio of roulette wheel 0.33 0.015

ρ1
3(g/ cm ) Density of roulette wheel 4.48 0.2

2(GPa)E Elastic modulus of hollow pin shaft 219 10

2v Poisson’s ratio of hollow pin shaft 0.3 0.015

ρ2
3(g/ cm ) Density of hollow pin shaft 7.76 0.3

F(KN) Resultant force on hollow pin shaft 24.925 0.315
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presented in Fig. 3, the stress-strain level at the junction between the 
roulette wheel and hollow pin is the highest, which is the dangerous 
failure point of the structure.

Since with the increase in rotating speed ω(rad/ s) , the maximum 
stress at the dangerous point will increase, the reliability of turbine 
disk will continue to degrade. According to the UD-LS surrogate 
model introduced in Section 3, a UD table 8

8 (25 )U ∗ with 8 fac-
tors and 25 levels was designed to arrange the experiment. Let the 
speed range is 0~2040rad/ s , and the range of other input factors is  
x fi i i= ±µ σ 4 , where µi  and σ i  are the mean value and standard 

deviation of each input factors, respectively, and 0,1,2, ,12f =  . 
Then, finite element simulation can be used to calculate the maximum 
stress of each experiment. The simulation results corresponding to 
each experiment are shown in Table 2.

According to the stress-strength interference model, the LSF of the 
three-stage turbine disk is established as:

 G S b b x b xi i
i

j j
j

( ) ( )x = − + +
= =
∑ ∑threshold 0

1

8
2

9

16
 (24)

Fig. 2. Model of three-stage turbine disk

Table 2. Finite element simulation results with uniform design

Sample 
number

ω(rad/ s) 1(GPa)E 1v ρ1
3(g/ cm ) E2(GPa) v2 ρ2

3(g/ cm ) F(KN) max (MPa)S

1 0 110.50 0.3000 4.18 209.00 0.2925 7.910 25.240 631.411289

2 85 114.25 0.3187 4.53 231.50 0.3337 7.085 24.531 610.493275

3 170 118.00 0.3375 4.88 189.00 0.2775 8.210 25.870 635.223855

4 255 121.75 0.3562 3.93 211.50 0.3187 7.385 25.161 620.446302

5 340 125.50 0.3750 4.28 234.00 0.2625 8.510 24.453 653.177425

6 425 129.25 0.2962 4.63 191.50 0.3038 7.685 25.791 685.938023

7 510 133.00 0.3150 4.98 214.00 0.3450 6.860 25.082 684.244701

8 595 136.75 0.3337 4.03 236.50 0.2888 7.985 24.374 689.337371

9 680 108.00 0.3525 4.38 194.00 0.3300 7.160 25.713 739.236521

10 765 111.75 0.3712 4.73 216.50 0.2737 8.285 25.004 746.209250

11 850 115.50 0.2925 5.08 239.00 0.3150 7.460 24.295 776.036791

12 935 119.25 0.3112 4.13 196.50 0.2587 8.585 25.634 792.389327

13 1020 123.00 0.3300 4.48 219.00 0.3000 7.760 24.925 804.746581

14 1105 126.75 0.3488 4.83 241.50 0.3413 6.935 24.216 819.019637

15 1190 130.50 0.3675 3.88 199.00 0.2850 8.060 25.555 826.739102

16 1275 134.25 0.2887 4.23 221.50 0.3262 7.235 24.846 863.456674

17 1360 138.00 0.3075 4.58 244.00 0.2700 8.360 24.137 877.634253

18 1445 109.25 0.3262 4.93 201.50 0.3113 7.535 25.476 893.024436

19 1530 113.00 0.3450 3.98 224.00 0.2550 8.660 24.768 912.663743

20 1615 116.75 0.3637 4.33 246.50 0.2963 7.835 24.059 934.261452

21 1700 120.50 0.2850 4.68 204.00 0.3375 7.010 25.398 999.430433

22 1785 124.25 0.3037 5.03 226.50 0.2813 8.135 24.689 1027.33931

23 1870 128.00 0.3225 4.08 249.00 0.3225 7.310 23.980 981.648181

24 1955 131.75 0.3412 4.43 206.50 0.2662 8.435 25.319 1071.52881

25 2040 135.50 0.3600 4.78 229.00 0.3075 7.460 24.610 1114.01504
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the LSF simulated in this experiment has a high degree of fit, which 
lays a good foundation for the next step of uncertainty propagation 
analysis.

6.2. Joint propagation of uncertainty and probability
Based on the different knowledge and sample data stages possessed 

by the reliability analyst on input factors, the reliability assessment 
can be implemented based on the uncertainty propagation model pro-
posed in Section 5. According to the selection principles proposed in 
Section 5.1, the uncertainty propagation of the turbine disk can be 
obtained as shown in Table 3. In stage 1, the reliability analyst does 
not have detailed sample data on all input variables. So a domain ex-
pert is invited to estimate the values of input factors. Seven normal 
uncertainty distributions are used to represent the expert’s beliefs cor-
responding to the input factors. In stage 2, the knowledge stage of reli-
ability analyst is improved, and the distribution of roulette wheel den-
sity ρ1  is confirmed as a normal probability distribution  
N ( , )µ σρ ρ1 1

 . Nonetheless, the expected value µρ1
 of N ( , )µ σρ ρ1 1

 is 

still uncertain, and a domain expert is 
invited to estimate the values of µρ1 . 
Therefore, a linear uncertainty distri-
bution  (3.78,5.18)  is used to repre-
sent the expert’s beliefs on the expect-
ed value µρ1 , but the other six input 
factors are still expressed as normal 
uncertainty distributions.

In stage 3, the knowledge stage of 
reliability analyst is improved further 
by obtaining sufficient data about 
roulette wheel density. So the normal 
probability distribution of ρ1  is de-
termined completely. Also, the normal 
uncertainty distributions of the other 
six input factors remain unchanged. In 
stage 4, the knowledge stage of reli-
ability analyst is improved, and the 
distributions of seven input variables 
is determined as a normal probability 
distribution. However, the expected 

values of N E E( , )µ σ
1 1

 and N v v( , )µ σ
1 1

 are still unknown, and do-
main experts believe that the expected values of N E E( , )µ σ

1 1
 and 

N v v( , )µ σ
1 1

 obey the linear uncertainty distributions  (95,151)  and 
 (0.274,0.386) , respectively. In stage 5, the expected values of 1E  
and 1v  are determined completely thanks to the sufficient sample data. 

where threshold 935MpaS =  is the threshold of roulette wheel strength, 
x = x x1 8,  is a vector of eight input factors, and b = ( , , , )b b b0 1 16

T  
is the vector of coefficients, which is estimated by the method in-
troduced in Section 3. The coefficient of determination is calculated 
as 2 0.99784R =  by Equation (10), and is very close to 1. Hence, 

Table 3. Distribution types and parameters at different knowledge stages

Stages
Distribution types and parameters of input variables

ρ1
3(g/ cm ) 1(GPa)E 1v 2(GPa)E 2v ρ2

3(g/ cm ) F(KN)

Stage 1  (4.48,0.2)  (123, 5)  (0.33,0.015)  (219,10)  (0.3,0.015)  (7.76,0.3)  (24.925,0.315)

Stage 2
N ( ,0.2)

1
µρ ,
µρ1 ~

 (3.78,5.18)
 (123, 5)  (0.33,0.015)  (219,10)  (0.3,0.015)  (7.76,0.3)  (24.925,0.315)

Stage 3 (4.48,0.2)N  (123, 5)  (0.33,0.015)  (219,10)  (0.3,0.015)  (7.76,0.3)  (24.925,0.315)

Stage 4 (4.48,0.2)N
N E( , 5)

1
µ ,
µE1 ~

 (95,151)

N v( ,0.015)
1

µ ,
µv1 ~

 (0.274,0.386)
(219,10)N (0.3,0.015)N (7.76,0.3)N (24.925,0.315)N

Stage 5 (4.48,0.2)N (123, 5)N (0.33,0.015)N (219,10)N (0.3,0.015)N (7.76,0.3)N (24.925,0.315)N

Fig. 4. Reliability assessment in level-1 propagation

Fig. 3. The finite element stress cloud diagram of turbine disk at ω=1000 
rad/s.
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In other words, all input factors are perfectly described by a normal 
probability distribution. The above-mentioned specific reliability as-
sessment processes under different knowledge and sample data stages 
are based on the joint uncertainty propagation method proposed in 
Section 5.

6.3. Results and discussion

Let the range of turbine disk speed ω be [0,2175] . Then the reli-
ability and index depending on ω in different stages can be calculated 
based on the methods developed in this paper. It is clear that with the 
increase in speed, the reliability and indexes of the turbine disk will 
degenerate because of the increase in stress.

As shown in Fig. 4, the reliability and indexes under three differ-
ent stages in level-1, namely pure uncertainty in stage 1, uncertain 
random in stage 3 and pure probability in stage 5 are compared. The 
results estimated from level-2 in stage 2 are shown in Fig. 5, where the 
reliability and index of turbine disk fluctuate with the unknown pa-
rameter µρ1

. In particular, when the rotation speed ω 1200rad / sω = , 
the reliability and index takes the values )0.9648,  0.9895(  and 

)1.8533,  2.3081( , respectively. Fig. 6 shows the variation of reli-
ability and index with unknown parameters µE1  and µv1

 at speed 
ω 1200rad / sω = , where the reliability and index take values in 

)0.9445,  0.9975(  and )1.5935,  2.8018( , respectively. The practical 
engineering example illustrates the specific implementation process 
of the presented method in detail, and the reliability of turbine disk are 
obtained in different knowledge and sample data stages.

Besides, the simulation results of the reliability and index for dif-
ferent knowledge stages at a specific speed ω 1200rad / sω =  are pre-
sented in Table 4. It is worth noting that the specific speed is selected 
arbitrarily and the same comparisons can be implemented at any speed 
value. As presented in Table 4, the reliability is transformed from the 
interval )0.9648,  0.9895(  in stage 2 to the determined value 0.9748 
in stage 3 due to the increase in sample data. Moreover, the reliabil-
ity is transformed from the interval )0.9445,  0.9975(  in stage 4 to 
the determined value 0.9871 in stage 5, which is a good explanation 
for the process of eliminating epistemic uncertainties. Similar conclu-
sions can be obtained from the reliability indexes in different stages. 
Besides, as shown in Fig. 4 and Fig.5, when the reliability values are 

close to 1 at some speed values, the 
reliability index can be employed 
to distinguish the reliability differ-
ences at these speed values.

In the context of structural reli-
ability assessment, the description 
of epistemic uncertainty is an in-
evitably common problem. Clas-
sical probability theory cannot be 
employed to express epistemic un-
certainty since the real frequency 
cannot be obtained due to lack of 
data. Fuzzy measure and possibil-
ity measure do not satisfy duality 
property, and hence the description 
of epistemic uncertainty is not rea-
sonable enough. Evidence and in-
terval theory leads to the problem 
of interval expansion in practical 
applications. Uncertainty theory 
is a newly proposed mathematical 
framework that firmly conforms to 
the normality, duality and subad-
ditivity theorems. This paper uses 
the uncertainty theory to describe 
epistemic uncertainty because it 
is more suitable for describing the 
human thinking processes. Also, 
the probability theory is chosen to 
represent aleatory uncertainty, and 
the chance theory is selected to deal 
with the situation when aleatory and 
epistemic uncertainties exist simul-
taneously. The results of case study 
shows that the level-1 and level-2 
joint propagation can be explained 
very well by combining the above 
three theories. Consequently, the 
practical engineering application 
shows that the various knowledge 
stages outcome the different reli-
ability levels, and the results high-
light that the presented methods are 
effective and could deliver clear 
messages to decision-makers.

Fig. 5. Reliability assessment in level-2 propagation (stage 2)

Fig. 6. Reliability assessment of level-2 propagation at ω =1200 rad/s (stage 4)

Table 4. Results of reliability and index corresponding to different stages

At ω=1200 rad/s Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Reliability 0.9565 (0.9648,0.9895) 0.9748 (0.9445,0.9975) 0.9871

Reliability index 1.7038 (1.8533,2.3081) 2.1092 (1.5935,2.8018) 2.2277
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The principles for choosing reasonable uncertainty propaga-(4) 
tion types are presented for structural reliability assessment.

Decision-makers can evaluate the structural reliability correspond-
ing to the different knowledge and sample data stages based on the 
uncertainty propagation method is proposed in this paper. As the mod-
el presented in this work is based on monotonic conditions, further 
research is required to focus on non-monotonic situations. Another 
interesting and important issue is to determine the distribution type of 
input factors based on small sample data.
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7. Conclusions
In this paper, a novel uncertainty propagation method is proposed 

for the structural reliability assessment under mixed aleatory and epis-
temic uncertainties. To enable the analyst to calculate the structural 
reliability according to the different knowledge stages, the principles 
of selecting the uncertainty propagation types and the corresponding 
reliability estimation methods are presented. In summary, the main 
contributions of this paper are as follows:

A new UD-LS surrogate model is proposed to solve the im-(1) 
plicit LSF problem involving random and uncertain variables.
The concepts of chance reliability and CRI are defined to de-(2) 
scribe structural reliability under mixed aleatory and epistemic 
uncertainties.
A novel level-2 uncertainty analysis method and the corre-(3) 
sponding reliability calculation model are provided for uncer-
tain random structures.
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